Fragilisation de l’acier martensitique T91 par l’eutectique liquide Plomb-Bismuth
(Embrittlement of martensitic steel T91 by liquid lead-bismuth eutectic)

URL d'accès : https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupve...

Auteur(s):  Ye, Changqing
Date de soutenance : 17/07/2014
Éditeur(s) : Université Lille1 - Sciences et Technologies 

Langue : Anglais
Directeur(s) de thèse :  Vogt, Jean-Bernard ; Serre, Ingrid
Laboratoire : Unité matériaux et transformation (UMET)
Ecole doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq)

Classification : Génie chimique, technologies alimentaires
Discipline : Sciences des matériaux
Mots-clés : Eutectique plomb-bismuth
Fragilisation par les métaux liquides
Essais mécaniques sous atmosphère contrôlée
Acier martensitique -- Fragilisation
Fractographie
Réacteurs nucléaires -- Matériaux

Résumé : Les aciers martensitiques Fe9Cr1MoNbV (acier T91) sont des bons candidats pour les composants des réacteurs nucléaires de Génération IV ou pour les réacteurs hybrides. Ces technologies employant des métaux liquides, la fragilisation par métal liquide est un problème pour l’intégrité des structures. Ce travail de thèse est une contribution à l’étude de la sensibilité de l’acier T91 en présence de l’eutectique Pb-Bi (LBE). L’approche, fortement expérimentale, a pour but de déterminer qualitativement et quantitativement les paramètres les plus pertinents pour déclencher la fragilisation. Une unité de purification de l’eutectique Pb-Bi a été conçue et construite au laboratoire pour retirer l’oxygène de l’eutectique Pb-Bi. Des essais mécaniques de type Small Punch Test, flexion 3 points et traction monotone ont pu être réalisés dans l’eutectique à faible teneur en oxygène dans une cellule d’essais à atmosphère contrôlée. L’acier T91, après avoir reçu son traitement thermique standard, s’est montré très sensible à la fragilisation par l’eutectique Pb-Bi à 300°C quand la vitesse de chargement était très faible aussi bien dans l’eutectique saturé ou appauvri en oxygène. Il s’avère que la vitesse de sollicitation est le facteur clé et la teneur en oxygène un facteur accélérateur de la fragilisation. Le mécanisme de fragilisation par l’eutectique Pb-Bi repose sur une diminution de l’énergie de surface et une diminution des forces de cohésions suite à l’adsorption des atomes Pb et Bi en fond de fissure. Une vitesse de déformation lente favorise la séquence oxydation-rupture du film d’oxyde qui se produit périodiquement au cours de la déformation.


Résumé (anglais) : Martensitic T91 steel is designated to constitute structural material for both Generation IV nuclear reactors and the high temperature components of future accelerator driven system (ADS) which employ liquid metals. The liquid LBE embrittlement of is one of the critical issues for the compatibility between the structural material T91 steel and the liquid metal. This thesis research has estimated the embrittlement sensitivity of T91 steel in liquid LBE qualitatively and quantitatively. A specific unit of LBE purification has been manufactured to remove oxygen from LBE. Special setup of Small Punch Test, three-point bending test and tensile test, have been developed in the laboratory to perform mechanical tests in low oxygen LBE inside an environmentally controlled atmosphere cell. T91 steel is a ductile material even when stressed in LBE but there exists a set of conditions which results in ductile to brittle transition. T91 steel has appeared very sensitive to liquid LBE embrittlement at 300°C when it very slowly loaded as well in oxygen saturated LBE as in low oxygen LBE even in the standard heat treatment. In addition, low oxygen content in LBE accelerates this brittle damage. Surface defects play a role when their size is of the order of a few grain sizes. The fracture toughness for T91 steel in liquid LBE can be just half of that in air. The mechanism of liquid LBE embrittlement of T91 is based on the reduction of both the values of interatomic bonds cohesive strength and of surface energy. Straining very slowly the material is supposed to favour oxidation-oxide film rupture sequences which allows real adsorption at crack tip and then propagation of brittle crack.


Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10