Analyse des expressions faciales dans un flux vidéo
(Analysis of facial expression in a video stream)

URL d'accès : http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupver...

Auteur(s):  Allaert, Benjamin
Date de soutenance : 08/06/2018
Éditeur(s) : Université Lille1 - Sciences et Technologies 

Langue : Français
Directeur(s) de thèse :  Djeraba, Chaabane ; Bilasco, Ioan Marius
Laboratoire : Centre de recherche en informatique, signal et automatique de Lille (CRIStAL)
Ecole doctorale : École doctorale Sciences pour l'Ingénieur (Lille)

Classification : Informatique
Discipline : Informatique et applications
Mots-clés : Flux optique
Reconnaissance de l'activité humaine (informatique)
Reconnaissance automatique des émotions
Expression du visage
Visage -- Mouvements
Mécanique humaine

Résumé : De nos jours, dans des domaines tels que la sécurité et la santé, une forte demande consiste à pouvoir analyser le comportement des personnes en s'appuyant notamment sur l'analyse faciale. Dans cette thèse, nous explorons de nouvelles approches à destination de systèmes d’acquisition peu contraints. Plus spécifiquement, nous nous intéressons à l'analyse des expressions faciales en présence de variation d'intensité et de variations de pose du visage. Notre première contribution s'intéresse à la caractérisation précise des variations d'intensité des expressions faciales. Nous proposons un descripteur innovant appelé LMP qui s'appuie sur les propriétés physiques déformables du visage afin de conserver uniquement les directions principales du mouvement facial induit par les expressions. La particularité principale de notre travail est de pouvoir caractériser à la fois les micro et les macro expressions, en utilisant le même système d'analyse. Notre deuxième contribution concerne la prise en compte des variations de pose. Souvent, une étape de normalisation est employée afin d'obtenir une invariance aux transformations géométriques. Cependant, ces méthodes sont utilisées sans connaître leur impact sur les expressions faciales. Pour cela, nous proposons un système d'acquisition innovant appelé SNaP-2DFe. Ce système permet de capturer simultanément un visage dans un plan fixe et dans un plan mobile. Grâce à cela, nous fournissons une connaissance du visage à reconstruire malgré les occultations induites par les rotations de la tête. Nous montrons que les récentes méthodes de normalisation ne sont pas parfaitement adaptées pour l'analyse des expressions faciales.


Résumé (anglais) : Facial expression recognition has attracted great interest over the past decade in wide application areas, such as human behavior analysis, e-health and marketing. In this thesis we explore a new approach to step forward towards in-the-wild expression recognition. Special attention has been paid to encode respectively small/large facial expression amplitudes, and to analyze facial expressions in presence of varying head pose. The first challenge addressed concerns varying facial expression amplitudes. We propose an innovative motion descriptor called LMP. This descriptor takes into account mechanical facial skin deformation properties. When extracting motion information from the face, the unified approach deals with inconsistencies and noise, caused by face characteristics. The main originality of our approach is a unified approach for both micro and macro expression recognition, with the same facial recognition framework. The second challenge addressed concerns important head pose variations. In facial expression analysis, the face registration step must ensure that minimal deformation appears. Registration techniques must be used with care in presence of unconstrained head pose as facial texture transformations apply. Hence, it is valuable to estimate the impact of alignment-related induced noise on the global recognition performance. For this, we propose a new database, called SNaP-2DFe, allowing to study the impact of head pose and intra-facial occlusions on expression recognition approaches. We prove that the usage of face registration approach does not seem adequate for preserving the features encoding facial expression deformations.


Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10