Machine à vecteurs de support hyperbolique et ingénierie du noyau
(Hyperbolic Support Vector Machine and Kernel design)

URL d'accès : http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupver...

Auteur(s):  El Dakdouki, Aya
Date de soutenance : 11/09/2019
Éditeur(s) : Université Lille1 - Sciences et Technologies 

Langue : Anglais
Directeur(s) de thèse :  Wicker, Nicolas ; Guermeur, Yann
Laboratoire : Laboratoire Paul Painlevé
Ecole doctorale : École doctorale Sciences pour l'Ingénieur (Lille)

Classification : Mathématiques
Discipline : Mathématiques et leurs interactions
Mots-clés : Classe de Glivenko-Cantelli
Classifieur multi-classe
Risque garanti (apprentissage automatique)
Complexité de Rademacher
Machines à vecteurs de support
Apprentissage automatique
Modèles de mélanges gaussiens
Fourier, Transformations de

Résumé : La théorie statistique de l’apprentissage est un domaine de la statistique inférentielle dont les fondements ont été posés par Vapnik à la fin des années 60. Il est considéré comme un sous-domaine de l’intelligence artificielle. Dans l’apprentissage automatique, les machines à vecteurs de support (SVM) sont un ensemble de techniques d’apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Dans cette thèse, notre objectif est de proposer deux nouveaux problèmes d’aprentissage statistique: Un portant sur la conception et l’évaluation d’une extension des SVM multiclasses et un autre sur la conception d’un nouveau noyau pour les machines à vecteurs de support. Dans un premier temps, nous avons introduit une nouvelle machine à noyau pour la reconnaissance de modèle multi-classe: la machine à vecteur de support hyperbolique. Géometriquement, il est caractérisé par le fait que ses surfaces de décision dans l’espace de redescription sont définies par des fonctions hyperboliques. Nous avons ensuite établi ses principales propriétés statistiques. Parmi ces propriétés nous avons montré que les classes de fonctions composantes sont des classes de Glivenko-Cantelli uniforme, ceci en établissant un majorant de la complexité de Rademacher. Enfin, nous établissons un risque garanti pour notre classifieur. Dans un second temps, nous avons créer un nouveau noyau s’appuyant sur la transformation de Fourier d’un modèle de mélange gaussien. Nous procédons de la manière suivante: d’abord, chaque classe est fragmentée en un nombre de sous-classes pertinentes, ensuite on considère les directions données par les vecteurs obtenus en prenant toutes les paires de centres de sous-classes d’une même classe. Parmi celles-ci, sont exclues celles permettant de connecter deux sous-classes de deux classes différentes. On peut aussi voir cela comme la recherche d’invariance par translation dans chaque classe. Nous l’avons appliqué avec succès sur plusieurs jeux de données dans le contexte d’un apprentissage automatique utilisant des machines à vecteurs support multi-classes.


Résumé (anglais) : Statistical learning theory is a field of inferential statistics whose foundations were laid by Vapnik at the end of the 1960s. It is considered a subdomain of artificial intelligence. In machine learning, support vector machines (SVM) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. In this thesis, our aim is to propose two new statistical learning problems : one on the conception and evaluation of a multi-class SVM extension and another on the design of a new kernel for support vectors machines. First, we introduced a new kernel machine for multi-class pattern recognition : the hyperbolic support vector machine. Geometrically, it is characterized by the fact that its decision boundaries in the feature space are defined by hyperbolic functions. We then established its main statistical properties. Among these properties we showed that the classes of component functions are uniform Glivenko-Cantelli, this by establishing an upper bound of the Rademacher complexity. Finally, we establish a guaranteed risk for our classifier. Second, we constructed a new kernel based on the Fourier transform of a Gaussian mixture model. We proceed in the following way: first, each class is fragmented into a number of relevant subclasses, then we consider the directions given by the vectors obtained by taking all pairs of subclass centers of the same class. Among these are excluded those allowing to connect two subclasses of two different classes. We can also see this as the search for translation invariance in each class. It successfully on several datasets in the context of machine learning using multiclass support vector machines.


Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10