Artificially induced anisotropy of thermal conductivity in 2D Si phononic membranes
(Anisotropie de la conductivité thermique artificiellement induite dans des membranes phononiques en silicium)

Thèse soumise à l'embargo de l'auteur jusqu'au 15/04/2020 (communication intranet).
URL d'accès : http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupver...

Auteur(s):  Didenko, Stanislav
Date de soutenance : 17/06/2019
Éditeur(s) : Université Lille1 - Sciences et Technologies 

Langue : Anglais
Directeur(s) de thèse :  Dubois, Emmanuel ; Skotnicki, Thomas ; Robillard, Jean-François
Laboratoire : Institut d'électronique, de microélectronique et de nanotechnologie (IEMN)
Ecole doctorale : École doctorale Sciences pour l'Ingénieur (Lille)

Classification : Sciences de l'ingénieur
Discipline : Electronique, microélectronique, nanoélectronique et micro-ondes
Mots-clés : Nano-fabrication
Guidage de chaleur dans des nanostructures de silicium
Cristaux phononiques
Silicium cristallisé
Conductivité thermique
Nanostructures
Spectroscopie Raman

Résumé : Ce travail de thèse est consacré au développement de mécanismes pratiques pour le guidage de chaleur dans des nanostructures de silicium de faible dimension. Les applications vont du domaine de la gestion thermique des circuits intégrés aux technologies et matériaux thermoélectriques émergents à base de Si, dans lesquels le guidage thermique de la chaleur peut jouer un rôle important. L'objectif est d'étudier expérimentalement la faisabilité d'une anisotropie de conductivité thermique (κ) dans le plan, induite artificiellement, des membranes nanostructurées en Si. En combinant la thermométrie Raman, la modélisation optique et la modélisation par éléments finis (FEM), il a été possible de mesurer le gradient thermique, la conductance de la membrane et de déterminer les conductivités thermiques effectives. Cette expérience confirme la possibilité d’induire artificiellement une anisotropie élevée de κ dans des membranes en silicium. Un modèle FEM paramétré conçu à dessein a démontré la mise en œuvre possible des effets anisotropes induits dans le domaine de la gestion thermique des circuits intégrés.


Résumé (anglais) : This thesis work is devoted to the development of practical mechanisms for the heat guiding in silicon low-dimensional nanostructures. The motivation comes from both the field of IC thermal management and emerging technology of Si-based thermoelectric devices, where directional heat guiding can play an important role. A series of micrometre-sized thermal characterisation platforms was designed and fabricated. The objective is to study experimentally the feasibility of artificially-induced in-plane anisotropy of effective thermal conductivity (κ) in Si nanopatterned membranes. By the combined use of micro Raman Thermometry, Rigorous Coupled Wave Analysis and Finite Element Modelling (FEM) it was possible to measure the thermal gradient, membrane conductance and determine effective thermal conductivities. This experiment confirms the possibility to induce artificially high anisotropy of κ in Si phononic membranes. Finally, purposefully designed parameterized FEM model demonstrated the possible implementation of the induced anisotropic effects in the area of IC thermal-management.


Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10