Conception et caractérisation de fibres optiques à modes à moment angulaire orbital
(Design and characterization of optical fiber for orbital angular momentum modes)

URL d'accès : http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupver...

Auteur(s):  Tandjè, Sourou Hugues Arsène
Date de soutenance : 15/10/2019
Éditeur(s) : Université Lille1 - Sciences et Technologies, Université d'Abomey-Calavi (Bénin) 

Langue : Français
Directeur(s) de thèse :  Bigot, Laurent ; Vianou, Antoine
Laboratoire : Laboratoire de physique des lasers, atomes et molécules (PhLAM)
Ecole doctorale : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq)

Classification : Sciences de l'ingénieur
Discipline : Milieux dilués et optique fondamentale
Mots-clés : Fibres légèrement multimodes
Multiplexage spatial
Moment angulaire orbital
Fibres à cristaux photoniques
Couplage de modes
Fibres optiques

Résumé : Les fibres optiques (qu’elles soient à saut ou à gradient d'indice) sont largement utilisées pour les liaisons longue (intercontinentale, dorsale optique terrestre) et courte portée (centre de données, réseau d'accès). Certaines fibres, appelées fibres optiques de spécialité, jouent également un rôle important dans d'autres domaines telles que la médecine (endoscopie par exemple), les capteurs, les applications au laser, etc. La multiplication constante des services Internet combinée à la croissance du nombre d'utilisateurs rend nécessaire l'augmentation de la capacité actuelle des réseaux à fibres optiques. Les fibres aujourd’hui installées et utilisées pour les transmissions à très haut débit utilisent uniquement le mode fondamental (noté LP01, dans l'approximation de faible guidage) pour transmettre les informations : on parle de fibres optiques monomodes. Comme ils atteignent maintenant la limite non-linéaire de Shannon, une des idées pour augmenter la capacité des réseaux optiques consiste à mettre en œuvre le multiplexage spatial (SDM) et à utiliser simultanément différents modes dans une fibre dite légèrement multimode (supportant généralement quelques dizaines de modes) ou une fibre multi-cœurs. Depuis 2010, plusieurs études ont été développées dans ce sens, principalement sur les fibres supportant les modes LP (Linéairement Polarisés) et, plus récemment, les modes OAM (moment angulaire orbital), c’est-à-dire des modes à polarisation circulaire et à phase hélicoïdale. Dans ce dernier cas, les propriétés de phase et de polarisation sont supposées limiter le couplage entre les modes. Ce travail de thèse porte sur la conception et la réalisation de fibres OAM présentant un couplage faible entre modes, pour une application au transport de données mais également pour une étude en photonique non-linéaire. Certaines des fibres étudiées sont des fibres à cœur annulaire fabriquées selon les méthodes de fabrication conventionnelles, présentant des rayons interne / externe et des indices d’anneau optimisés. Nous avons fabriqué de telles fibres à cœur annulaire toute solide dans le but de les appliquer pour une transmission MIMO simple en utilisant des modes OAM comme des canaux indépendants. Cependant, nous avons également conçu et fabriqué la première fibre à cristal photonique (PCF) avec un cœur annulaire quasi-circulaire, à faible perte par confinement et adaptée au guidage des modes OAM. Nous avons montré expérimentalement que les fibres fabriquées supportent les modes OAM et leurs matrices de transmission ont été mesurées. Nous avons également effectué des expérimentations préliminaires sur le décalage solitonique dans la fibre PCF supportant les modes OAM.


Résumé (anglais) : Optical fibers (step index and graded-index ones) are widely used for long-haul (intercontinental, terrestrial optical backbone) and short-reach (datacenter, access network) links. Some fibers called specialty optical fibers also play an important role in other applications like medicine (endoscopy for example), sensing, laser applications etc. The constant rise of Internet services combined to the growth of the number of Internet users makes it necessary to increase the current capacity of optical fiber networks. The fibers commercially used today for very high data rate transmissions use only the fundamental mode (denoted LP01, in the weakly guiding approximation) to transmit the information: there are known as single-mode fibers. As they are now reaching the so-called nonlinear Shannon limit, one of the ideas for increasing the capacity of fiber networks is to implement space-division multiplexing (SDM) and then simultaneously use different modes in a so-called few-mode fiber (fiber supporting typically dozens of modes) or a multicore fiber. Since 2010, several studies have been developed in this direction, mainly on fibers supporting LP (Linearly Polarized) modes and more recently OAM (Orbital Angular Momentum) modes, i.e. modes with helical phase and circular polarization. In this last case, phase and polarization properties are supposed to limit the coupling between modes. This PhD work deals with the design and the realization of OAM fibers presenting weak coupling between modes, for application to data transport but also for study in nonlinear photonics. Some of the fibers studied are annular core fibers made by conventional manufacturing methods, having internal / external radii and optimized ring refractive indices. We fabricated such all-solid ring-core fibers with the aim to apply them for simple MIMO transmission using OAM modes as independent channels. However, we also designed and manufactured the first photonic crystal fiber (PCF) with close-to-circular ring-core, low confinement loss and suitable for OAM mode guidance. We experimentally show that the fabricated fibers support OAM modes, and their transmission matrices have been measured. We also performed preliminary solitonic shifting experimentations in PCF fiber supporting OAM.


Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10