• 26 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Editeur Auteur Titre

Aerosol hygroscopic properties: a laboratory approach for single and multi-component inorganic particles of atmospheric relevance

/ El Hajj Danielle / Université Lille1 - Sciences et Technologies / 05-03-2019
Voir le résumé | Accéder à la ressource
Voir le résumé
Les aérosols atmosphériques jouent un rôle essentiel sur l’équilibre énergétique de la planète et ont également un impact important sur la santé humaine. Le dernier rapport d’évaluation du Groupe d’Experts Intergouvernemental sur l’Evolution du Climat (GIEC) souligne que le niveau d’incertitude du forçage radiatif des aérosols est particulièrement élevé. Ceci est principalement dû aux effets complexes et mal quantifiés des propriétés chimiques, physiques et optiques des aérosols. En particulier, une humidité relative élevée (RH) augmente la quantité de vapeur d’eau captée par les particules d’aérosol atmosphériques, ce qui modifie leurs tailles, leurs morphologies et leurs composition chimiques et donc leurs propriétés optiques. Les mesures in situ des propriétés des aérosols (coefficients de diffusion et d’absorption, distribution en taille) sont généralement obtenues dans des conditions sèches (RH <40%). Or dans l’atmosphère les aérosols existent à humidité plus importante. Il est donc essentiel de connaı̂tre l’évolution des propriétés physico-chimiques et optiques des particules d’aérosol à différentes humidités relatives, afin d’améliorer les estimations des forçages radiatifs de l’aérosol. Le but de ce travail est d’étudier l’évolution des propriétés optiques (diffusion et absorption), physiques (taille) des aérosols à différentes humidités, en s’appuyant sur des mesures de laboratoire à humidité contrôlée. Des aérosols purs ont été générés, tels que des particules de silice amorphe (SiO2 ), de chlorure de sodium (NaCl), de sulfate d’ammonium ((NH4)2SO4), de nitrate de sodium (NaNO3 ) et le chlorure de potassium (KCl). L’étude est d’abord réalisée à faible humidité relative (≈ 35% RH), ensuite, les mesures sont effectuées à une RH plus élevée (de 40 à 90%) en utilisant deux dispositifs expérimentaux différents. La vapeur d’eau captée par l’aérosol, calculée à l’aide du modèle thermodynamique E-AIM, provoque un changement de sa taille et de son indice de réfraction (RI) qui influence directement ses propriétés optiques . La relation de Zdanovskii-Stokes-Robinson (ZSR) est appliquée aux mélanges d’aérosols et comparée aux mesures expérimentales. Les écarts constatés seront présentés et devraient être utilisés pour mieux comprendre l’influence de la vapeur d’eau captée par les aérosols sur le forçage radiatif estimé par les modèles climatiques.

Propriétés optiques et chimiques des cendres volcaniques : mesures de laboratoire et applications à la télédétection spatiale

/ Deguine Alexandre / Université Lille1 - Sciences et Technologies / 20-12-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
Lors d'une éruption volcanique, une énorme quantité d'aérosols est émise dans l'atmosphère. En absorbant et en diffusant le rayonnement solaire, les cendres volcaniques influencent le bilan radiatif terrestre. Les aérosols peuvent être détectés par télédétection en utilisant par exemple des spectromètres embarqués sur des satellites. Ces instruments enregistrent le signal d'extinction d'une colonne atmosphérique mélangeant les apports de gaz et d'aérosols. À partir de ces observations, l'objectif principal est d'estimer la composition chimique, la taille et la concentration des particules. Dans le but de restituer ces paramètres, il est essentiel de déterminer l'indice complexe de réfraction m. Cependant, celui-ci est mal connu et reste l’une des principales sources d’incertitude. De ce fait, une nouvelle méthodologie a été appliquée afin de mesurer les spectres d'extinction de divers aérosols. Le système mécanique est utilisé pour générer un nuage de cendres volcaniques. Des spectromètres enregistrent les spectres d’extinction de l’UV-visible à l’infrarouge et la distribution en taille. La combinaison de données expérimentales et d'un processus itératif est utilisée afin de récupérer les constantes optiques n et k conduisant à l'indice de réfraction complexe m. Cette méthodologie a été appliquée à cinq échantillons de cendres volcaniques prélevés au Chili et en Islande. De plus, une analyse chimique a été réalisée pour chaque échantillon en utilisant la Fluorescence par rayons X (FRX) afin de déterminer le lien entre les propriétés optiques et chimiques. Enfin, les résultats obtenus grâce à la méthodologie sont utilisés pour l'inversion des cas d'étude d'IASI.

Aerosol spatial and temporal variability as seen by Mobile Aerosol Monitoring System (MAMS)

/ Popovici Ioana Elisabeta / Université Lille1 - Sciences et Technologies / 18-12-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
Les aérosols sont une composante variable de l'atmosphère, ayant un rôle important et complexe sur la qualité de l'air et le climat. La plupart des observations d'aérosols au sol sont limitées à des emplacements fixes, ce qui réduit la connaissance sur leur variabilité spatiale. Afin de compléter cette information, un système mobile d’observation des aérosols (MAMS - Mobile Aerosol Monitoring System) a été mis au point pour explorer la variabilité verticale et spatiale des propriétés optiques et microphysiques des aérosols. MAMS est un « laboratoire » conçu sur un véhicule, se distinguant des autres plateformes transportables par sa capacité à effectuer des mesures au cours du mouvement. Equipé d'instruments de télédétection et in situ, MAMS a exploré la variabilité des aérosols au travers de campagnes mobiles sur routes dans diverses situations. Ce travail présente les études de variabilité et des événements remarquables observés en France et en Chine. L’une des variables aérosols recherchée est leur concentration massique et leur distribution verticale. Ce défi est relevé dans ce travail. Le système mobile offre une grande flexibilité, et un bon rapport coût-efficacité, car il permet de réagir rapidement en cas d’événements aérosols soudains, tels que des épisodes de pollution, poussières, incendies ou éruptions volcaniques, démontrant son utilité pour les réseaux d’observation recherche et opérationnels. Les applications de la plateforme d'exploration mobile pour les activités de validation des missions spatiales d’observation de la Terre et de l’atmosphère, pour l’évaluation des modèles et les campagnes d’intercomparaison d’instruments sont présentées. Des nouvelles perspectives, tant au niveau instrumental que méthodologique, sont introduites, laissant la place à des améliorations dans les observations mobiles des aérosols.

Characterization of cirrus clouds from ground-based remote sensing using the synergy of lidar and multi-spectral infrared radiometry

/ Hemmer Friederike / Université Lille1 - Sciences et Technologies / 07-12-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
Il est maintenant bien établi que les cirrus ont un impact important sur le climat. Cependant, l'estimation de cet effet est difficile car notre connaissance des propriétés microphysiques de ce type de nuage est encore incertaine. L'objectif de cette thèse est donc d’améliorer notre compréhension de la microphysique complexe du cirrus composé principalement de cristaux de glace de forme irrégulière et d'estimer ainsi un contenu en glace (ice water content, IWC) plus précis. Pour cela, nous avons développé un algorithme permettant de restituer le profil vertical d'IWC du cirrus. La méthodologie considère une synergie entre les mesures d'un lidar et celles d'un radiomètre infrarouge thermique (IRT) effectuées depuis le sol, via une méthode d'estimation optimale. Ce travail s’est déroulé en trois étapes: (1) Le contenu en glace intégré verticalement (ice water path, IWP) est estimé à partir des mesures passives IRT. (2) L'information sur la distribution verticale d'IWC à l'intérieur du nuage est obtenue avec les mesures actives du lidar. Cette restitution dépend fortement du rapport entre la rétrodiffusion et l'extinction des cristaux de glace obtenu avec un modèle microphysique. La fonction de phase du modèle utilisée pour définir ce rapport ne prend pas en compte le pic de rétrodiffusion. Nous montrons que cette hypothèse aboutit à des résultats non réalistes par rapport aux mesures IRT. (3) Par conséquent, les deux types d’informations sont combinées en synergie pour estimer, lors de la restitution des profils verticaux d'IWC, un facteur correctif permettant de rendre compte de ce pic de rétrodiffusion. Finalement, les résultats et les hypothèses associées sont discutés.

Analyse temporelle des propriétés optiques, microphysiques et macrophysiques de systèmes nuageux fortement précipitants à partir de SEVIRI/MSG

/ Patou Maximilien / Université Lille1 - Sciences et Technologies / 03-04-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
La formation et l’intensification des précipitations sont le résultat de différents processus microphysiques menant au grossissement des hydrométéores nuageux. Les caractéristiques macrophysiques de formation et de développement des nuages convectifs fournissent un cadre environnemental qui influence et contraint ces processus microphysiques. L’observation de l’évolution des nuages à haute résolution temporelle permet de mettre en évidence ces processus microphysiques dont la compréhension est indispensable à la prévision à courte échéance des fortes précipitations. Dans ce travail, nous avons mis au point une méthode originale de suivi à haute résolution temporelle (cinq minutes) de systèmes convectifs isolés et associés à de fortes précipitations à partir de l’instrument SEVIRI (Spinning Enhanced Visible and Infrared Imager) embarqué sur le satellite géostationnaire MSG (Météosat Seconde Génération). À partir de plusieurs cas d’étude, une analyse combinée de l’évolution temporelle des propriétés microphysiques (phase thermodynamique, rayons effectifs des hydrométéores), optiques (épaisseur optique) et macrophysiques (ratio périmètre/surface, température moyenne) au sommet des nuages ainsi que l’observation de l’évolution des précipitations au sol ont permis d’identifier sur une période d’intensification des précipitations allant de 30 minutes à 2h, un comportement typique des propriétés au sommet des nuages. Ce résultat fournit une base d'analyse pour la détermination future d’indicateurs précurseurs des fortes précipitations.

Monitoring of aerosol chemical composition by remote sensing: Verification of the concept and methodology development

/ Li Lei / Université Lille1 - Sciences et Technologies / 31-01-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
La détermination de la composition chimique des aérosols atmosphériques est essentielle pour le climat terrestre et l’environnement. Néanmoins, les mesures in situ qui permettent d’accéder à cette composition sont limitées et les modèles de chimie-transport peuvent ne pas bien représenter la réalité. Notre travail de thèse a consisté à développer une nouvelle approche afin de remonter à la composition des aérosols à grande échelle par télédétection. Les modèles de mélange des composants des aérosols, soit par proportion en volume soit par l’approximation de Maxwell Garnett qui relient les propriétés optiques à la composition, ont été incorporés dans l’algorithme de restitution des propriétés atmosphériques (GRASP). La nouveauté du concept réside dans la restitution directe des composants chimiques de l’aérosol plutôt que dans une estimation indirecte à partir des propriétés optiques retrouvées. Les tests synthétiques ont montré une sensibilité des observations du satellite POLDER/PARASOL à la présence d’éléments chimiques clés des aérosols. La méthodologie a ensuite été appliquée aux mesures réelles. Les caractéristiques optiques dérivées de PARASOL en utilisant le module de composition chimique ont montré un bon accord (R de ~ 0,9 pour l’épaisseur optique) avec nos mesures de référence — le réseau AERONET. La méthodologie a aussi été appliquée aux mesures de AERONET. Les variabilités spatiale et temporelle de la composition de l’aérosol ainsi retrouvée correspondent bien à nos attentes. La composition obtenue a également été validée à l’aide de données de campagne de terrain et a pu être comparée avec les simulations réalisées avec le modèle chimie-transport GOCART.

Retrieving global sources of aerosol emissions from satellite observations

/ Chen Cheng / Université Lille1 - Sciences et Technologies / 31-01-2018
Voir le résumé | Accéder à la ressource
Voir le résumé
La compréhension du rôle des aérosols atmosphériques dans le fonctionnement du système terre-atmosphère est limitée par les incertitudes sur leur répartition spatiale, leur composition et leurs sources. Si leurs impacts sur le changement climatique et l’environnement peuvent être évalués grâce aux modèles de chimie-transport, ces incertitudes en limitent la précision. Les observations satellitaires ont la capacité de fournir à l’échelle globale des informations précises sur un certain nombre de paramètres « aérosols » mais elles sont limitées par les conditions nuageuses, la périodicité des orbites et par le contenu en information, c’est-à-dire le type de paramètres que l’on peut retrouver suivant la nature de ces observations. Une approche prometteuse consiste à améliorer les champs d’émission des modèles en utilisant le principe de la modélisation inverse. Dans cette étude, nous avons conçu une méthode de restitution simultanée des sources d’émission de poussières désertiques, de carbone suie et de carbone organique à partir des produits satellitaires (POLDER/PARASOL) dérivés en utilisant l’algorithme GRASP, conjointement à une modélisation inverse du modèle GEOS-Chem. Cela nous a permis de créer une base de données d’émissions globales d’aérosols sur la période 2006 – 2011. Des simulations réalisées avec les modèles directs GEOS-Chem et GEOS-5/GOCART utilisant cette base de données montrent bien entendu un bon accord avec des observations POLDER mais aussi une nette amélioration de la modélisation de l’aérosol à l’échelle globale lorsque l’on compare les sorties à des mesures indépendantes du réseau AERONET ou à d’autres mesures spatiales (MODIS, MISR, OMI).

Study on multi-layer "aerosol" situations and of "aerosol-cloud" interactions

/ Deaconu Lucia-Timea / Université Lille1 - Sciences et Technologies / 19-12-2017
Voir le résumé | Accéder à la ressource
Voir le résumé
Le premier objectif de cette étude est d’analyser la cohérence entre les restitutions d’aérosols au-dessus des nuages (AAC) réalisées à partir de mesures spatiales passive et active. Nous avons considéré la méthode basée sur les mesures polarisées de POLDER, la méthode développée pour le lidar spatial CALIOP et la méthode basée sur le rapport de dépolarisation CALIOP (DRM), pour laquelle nous proposons une version calibrée. Nos analyses régionale et pluriannuelle globale mettent en évidence un bon accord statistique entre les restitutions DRM et POLDER AOT (R2=0,68 - échelle globale), qui donne confiance dans notre capacité à mesurer les propriétés de l'AAC. Des différences se produisent lors du contact entre les couches d'aérosols et de nuages. La méthode opérationnelle de CALIOP sous-estime l’AOT, comparé aux deux autres méthodes. Le second objectif est d'étudier l'impact des aérosols sur les propriétés des nuages et leur forçage radiatif, sur l'océan Atlantique Sud. Nous avons considéré une synergie entre les restitutions CALIOP et POLDER avec des paramètres météorologiques colocalisés. Nous réalisons des calculs de transfert radiatif dans les domaines visible et infrarouge, et analysons l'effet de la charge en aérosol sur les propriétés des nuages et la météorologie. Nous avons trouvé que les aérosols et le contenu en vapeur d’eau pourraient impacter la convection des nuages. Nos résultats montrent que sous de fortes charges de AAC, les nuages deviennent optiquement plus épais, avec une augmentation du contenu en eau liquide de 20 g.m-2 et des altitudes plus basses du sommet du nuage (~200 m); indiquant un potentiel effet semi-direct des aérosols au-dessus des nuages.

Propriétés physico-chimiques, optiques et identification des sources des aérosols en Afrique de l’Ouest

/ Rivellini Laura-Hélèna / Université Lille1 - Sciences et Technologies / 12-12-2017
Voir le résumé | Accéder à la ressource
Voir le résumé
Ce travail de thèse a consisté à étudier la nature chimique, les origines, ainsi que les propriétés des aérosols en Afrique de l’Ouest. Nous avons en particulier recherché les liens entre la composition chimique des particules fines en surface et les propriétés optiques des aérosols. Notre étude s’est appuyée sur les mesures effectuées au cours de la campagne de terrain SHADOW sur le site de M’Bour (Sénégal) durant deux périodes d’observations intensives : mars à juin 2015 (POI-1) et novembre 2015 à janvier 2016 (POI-2). Un dispositif instrumental permettant une caractérisation chimique en ligne et à haute résolution temporelle des aérosols submicroniques (TEOM-FDMS, ACSM, aéthalomètre) a été mis en place, en parallèle d’instruments de mesure des propriétés optiques des aérosols en surface (aéthalomètre, néphélomètre) et sur la colonne atmosphérique par télédétection (photomètre, Lidar). Les données météorologiques couplées à différents outils statistiques ont permis de classer les espèces ayant une contribution locale et/ou régionale, et d’identifier les zones sources à l’origine des fortes concentrations. La modélisation sources-récepteur (PMF) a permis une analyse approfondie de la fraction organique des PM1, mettant en évidence une photochimie très active et l’influence d’activités anthropiques spécifiques (incinération de déchets, fumage de poisson). Nous avons pu caractériser, selon la saison, les types d’aérosols contribuant majoritairement à l’extinction des particules fines mesurée en surface à M’Bour, ainsi que mettre en évidence les liens/différences entre mesures de télédétection et propriétés chimiques/optiques des particules fines au cours des deux POI.

Investigation of atmospheric aerosol mixing state effect on measured and retrieved optical characteristics: an approach integrating individual particle analysis, remote sensing and numerical simulations

/ Unga Florin / Université Lille1 - Sciences et Technologies / 06-03-2017
Voir le résumé | Accéder à la ressource
Voir le résumé
Les aérosols troposphériques influencent la composition chimique de l’atmosphère, le bilan radiatif terrestre et le climat. Après formation, les aérosols subissent des processus de vieillissement altérant leurs propriétés microphysiques et chimiques. L’étude de l’impact environnemental des aérosols à différentes échelles spatio-temporelles doit donc tenir compte des transformations physico-chimiques. Les objectifs poursuivis sont : (i) d’étudier par microscopie analytique électronique à balayage et en transmission la composition élémentaire et l'état de mélange des particules atmosphériques prélevées lors d'épisodes de charge élevée en aérosol ; (ii) d’analyser les effets des propriétés microphysiques sur les caractéristiques optiques mesurées et restituées par télédétection ; (iii) de proposer un paramétrage ainsi qu’une représentation de la composition et de la structure des particules dans les algorithmes de télédétection. Ces travaux portent sur des observations dans le Nord de la France et en Afrique de l’Ouest (Sénégal) dans le cadre du Labex CaPPA et des campagnes de terrain SHADOW. Sont inclues des analyses complémentaires de la composition chimique et de la structure de particules individuelles, de mesures in situ et par télédétection de particules urbano-industrielles, désertiques et de biomasse prélevées en surface et à différentes altitudes. Une série de simulations numériques ont été utilisées dans le but d'analyser la sensibilité des observations par télédétection à l’état de mélange des aérosols. Enfin, l'intégration d'un paramétrage de la structure en "core-shell" des particules dans les algorithmes de restitution est présentée en perspective.

Cité Scientifique BP 30155 59653 VILLENEUVE D'ASCQ CEDEX Tél.:+33 (0)3 20 43 44 10